Modeling 1-D Cold Electrostatic Plasma with a Lagrangian Particle Method

Horacio Moreno Montanes Robert Krasny

June 20, 2023

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

June 20, 2023

Outline

- Plasma Crash Course
- 2 Mathematical Formulation of Plasma Dynamics
- Model and Numerical Methods

Preview

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶
June 20, 2023

What Is Plasma?

Credit: Gaton Medical

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma Ju

4/19

Applications of Plasma

Horacio Moreno Montanes, Robert Krasny

Lagrangian Particle Method for 1-D Cold ES Plasma

< □ ▶ < ⊡ ▶ < ⊡ ▶ < ⊡ ▶
 June 20, 2023

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

• Plasma is made of too many particles to keep track of.

 $\bullet~\geq 10^{14}$ particles per cm^3 in fusion

- Plasma is made of too many particles to keep track of.
 - $\bullet~\geq 10^{14}$ particles per cm^3 in fusion
- The **particle distribution function** f(x, v, t) represents the number of particles with velocity v, at position x, at time t.

- Plasma is made of too many particles to keep track of.
 - $\bullet~\geq 10^{14}$ particles per cm^3 in fusion
- The **particle distribution function** f(x, v, t) represents the number of particles with velocity v, at position x, at time t.
- Taken to be normalized:

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,v,t)dxdv=1$$

For $(x, v) \in [0, 1] \times (-\infty, \infty)$:

For $(x, v) \in [0, 1] \times (-\infty, \infty)$:

Vlassov:
$$\partial_t f + v \partial_x f + q E \partial_v f = 0$$
 Poisson: $-\partial_x^2 \phi = \rho$ $(-\partial_x \phi = E)$

For $(x, v) \in [0, 1] \times (-\infty, \infty)$:

Vlassov:
$$\partial_t f + v \partial_x f + q E \partial_v f = 0$$
 Poisson: $-\partial_x^2 \phi = \rho$ $(-\partial_x \phi = E)$

$$f(0,\mathbf{v},t)=f(1,\mathbf{v},t) \hspace{0.5cm} \phi(0,t)=\phi(1,t) \hspace{0.5cm} \partial_{x}\phi(0,t)=\partial_{x}\phi(1,t)$$

For $(x, v) \in [0, 1] \times (-\infty, \infty)$:

Vlassov:
$$\partial_t f + v \partial_x f + q E \partial_v f = 0$$
 Poisson: $-\partial_x^2 \phi = \rho$ $(-\partial_x \phi = E)$

$$f(0,\mathbf{v},t)=f(1,\mathbf{v},t) \hspace{0.5cm} \phi(0,t)=\phi(1,t) \hspace{0.5cm} \partial_{x}\phi(0,t)=\partial_{x}\phi(1,t)$$

$$f(x,v,t) = f_0(x,v)$$
 $ho(x,t) = q \int_{-\infty}^{\infty} f(x,v,t) dv + 1$

イロト 不得下 イヨト イヨト

э

7/19

Green's Function Solution for $\phi(x, t)$

We can solve the Poisson Eq. $(-\partial_x^2 \phi = \rho)$ with the periodic extension of the free-space **Green's Function** for the 1D Laplacian:

$$\phi(x,t)=\int_0^1\left(g(x,y)-xy
ight)
ho(y,t)dy,\quad g(x,y)=-rac{1}{2}|x-y|$$

Green's Function Solution for $\phi(x, t)$

We can solve the Poisson Eq. $(-\partial_x^2 \phi = \rho)$ with the periodic extension of the free-space **Green's Function** for the 1D Laplacian:

$$\phi(x,t)=\int_0^1\left(g(x,y)-xy
ight)
ho(y,t)dy,\quad g(x,y)=-rac{1}{2}|x-y|$$

From the potential ϕ we can also obtain the electric field *E*:

$$E(x,t) = \int_{-\infty}^{\infty} \int_{0}^{1} \underbrace{(g_{x}(x,y) + x - y)}_{\text{Kernel } K(x,y)} f(y,v,t) dy dv$$

• Represent the plasma by electrons by *N* charged particles in **phase space**.

▶ < ⊒ ▶

- Represent the plasma by electrons by *N* charged particles in **phase space**.
- $f(x, v, t) \rightarrow x_i(t), v_i(t),$ $i = 1 \dots N.$

• Represent the plasma by electrons by *N* charged particles in **phase space**.

•
$$f(x, v, t) \rightarrow x_i(t), v_i(t),$$

 $i = 1 \dots N.$

Particle Phase Space (N = 32, $\delta = 0.0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

ŀ

Plasma Discretization

• Represent the plasma by electrons by *N* charged particles in **phase space**.

•
$$f(x, v, t) \rightarrow x_i(t), v_i(t),$$

 $i = 1 \dots N.$

Particle Phase Space (N = 32, $\delta = 0.0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

$$egin{aligned} \mathcal{K}(x,y) &= g_x(x,y) + x - y \ &= -rac{1}{2} \mathrm{sgn} |x-y| + x - y \ \mathcal{K}(x,t) &= \int_{-\infty}^\infty \int_0^1 \mathcal{K}(x,y) f(y,v,t) dy dv \end{aligned}$$

• Represent the plasma by electrons by *N* charged particles in **phase space**.

•
$$f(x, v, t) \rightarrow x_i(t), v_i(t),$$

 $i = 1 \dots N.$

Particle Phase Space (N = 32, $\delta = 0.0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

$$\begin{split} \mathcal{K}(x,y) &= g_x(x,y) + x - y \\ &= -\frac{1}{2} \mathrm{sgn} |x - y| + x - y \\ \mathcal{E}(x,t) &= \int_{-\infty}^{\infty} \int_0^1 \mathcal{K}(x,y) f(y,v,t) dy dv \\ &\approx \sum_{j=1}^N \mathcal{K}(x,x_j) w_j \end{split}$$

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_i''(t) = qE(x_i, t)$$

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_i''(t) = q E(x_i, t) = -\sum_{j=1}^N K(x_i, x_j) w_j$$

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_i''(t) = qE(x_i, t) = -\sum_{j=1}^N K(x_i, x_j)w_j = \sum_{j=1}^N \left(\frac{1}{2} \text{sgn}|x_i - x_j| - x_i + x_j\right)w_j$$

June 20, 2023

10 / 19

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_i''(t) = qE(x_i, t) = -\sum_{j=1}^N K(x_i, x_j)w_j = \sum_{j=1}^N \left(\frac{1}{2} \text{sgn}|x_i - x_j| - x_i + x_j\right)w_j$$

Initial conditions $(i = 1 \dots N)$:

$$\alpha_i = \frac{i - 1/2}{N}$$

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

▶ < ⊒ ▶

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_i''(t) = qE(x_i, t) = -\sum_{j=1}^N K(x_i, x_j)w_j = \sum_{j=1}^N \left(\frac{1}{2} \text{sgn}|x_i - x_j| - x_i + x_j\right)w_j$$

Initial conditions $(i = 1 \dots N)$:

$$\alpha_i = \frac{i-1/2}{N}$$
 $x_i(0) = \alpha_i + \epsilon \sin(2\pi\alpha_i)$

Horacio Moreno Montanes, Robert Krasny

Lagrangian Particle Method for 1-D Cold ES Plasma

▶ < ⊒ ▶

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_i''(t) = qE(x_i, t) = -\sum_{j=1}^N K(x_i, x_j)w_j = \sum_{j=1}^N \left(\frac{1}{2} \text{sgn}|x_i - x_j| - x_i + x_j\right)w_j$$

Initial conditions $(i = 1 \dots N)$:

$$\alpha_i = \frac{i-1/2}{N}$$
 $x_i(0) = \alpha_i + \epsilon \sin(2\pi\alpha_i)$ $v_i(0) = 0$

Horacio Moreno Montanes, Robert Krasny

Lagrangian Particle Method for 1-D Cold ES Plasma

June 20, 2023

10/19

With a discretized plasma, we can calculate the acceleration felt on each of the particles:

$$x_{i}''(t) = qE(x_{i}, t) = -\sum_{j=1}^{N} K(x_{i}, x_{j})w_{j} = \sum_{j=1}^{N} \left(\frac{1}{2}\text{sgn}|x_{i} - x_{j}| - x_{i} + x_{j}\right)w_{j}$$

$$\epsilon = 0.1$$

$$t = 0$$

$$t = 0$$

$$t = 0$$

$$e = 0.1$$

$$t = 0$$

$$e = 0.2$$

$$t = 0$$

$$t = 0.1$$

$$t = 0$$

$$t = 0$$

$$t = 0$$

$$t = 0.1$$

$$t = 0$$

$$t = 0$$

$$t = 0.1$$

$$t = 0$$

$$t = 0$$

$$t = 0.1$$

Results

VIDEO HERE

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶
June 20, 2023

Results

Particle Phase Space (N = 64, $\delta = 0.0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

Particle Phase Space (N = 256, $\delta = 0.0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma June 20, 2023

Results

t = 10

Some Problems

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma イロト 不得 トイヨト イヨト June 20, 2023

э

14 / 19

Some Problems

Irregularities at the center:

Particle Phase Space (N = 128, $\delta = 0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

June 20, 2023

Some Problems

Irregularities at the center:

Particle Phase Space (N = 128, $\delta = 0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

Loss of definition over time:

Particle Phase Space (N = 128, $\delta = 0.0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

Center Irregularities

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma イロト 不得 トイヨト イヨト June 20, 2023

э

15 / 19

Center Irregularities

Due to lack of continuity in the kernel function K(x, y):

$$K(x,y) = -\frac{1}{2}$$
sgn $|x - y| + x - y$

(4) E > (4) E >

Center Irregularities

Due to lack of continuity in the kernel function K(x, y):

$$K(x,y) = -\frac{1}{2}$$
sgn $|x - y| + x - y$

Solution: Add a regularization parameter δ :

$$\mathcal{K}_{\delta}(x,y)=-rac{x-y}{2\sqrt{(x-y)^2+\delta^2}}+x-y$$

▶ < ⊒ ▶

Center Irregularities

Due to lack of continuity in the kernel function K(x, y):

$$\mathcal{K}(x,y) = -rac{1}{2} \mathrm{sgn} |x-y| + x - y$$

Solution: Add a regularization parameter δ :

$$\mathcal{K}_{\delta}(x,y)=-rac{x-y}{2\sqrt{(x-y)^2+\delta^2}}+x-y$$

Regularized vs. Non-regularized K(x, y) for y = 0.5

→

15 / 19

Regularized Electric Field

Particle Phase Space (N = 128, $\delta = 0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

< E

Regularized Electric Field

Particle Phase Space (N = 128, $\delta = 0$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

Particle Phase Space (N = 128, $\delta = 0.01$, $\Delta t = 0.01$, $\varepsilon = 0.05$)

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma June 20, 2023

Regularized Electric Field

VIDEO OF REGULARIZED KERNEL

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

< □ ▶ < 酉 ▶ < 亘 ▶ < 亘 ▶
 June 20, 2023

17 / 19

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma

3

• Adaptive particle insertion

June 20, 2023

→ < ∃ →</p>

18/19

- Adaptive particle insertion
- Evaluate 2-stream instability

< ∃

- Adaptive particle insertion
- Evaluate 2-stream instability
- Extend to warm distributions

Questions?

Horacio Moreno Montanes, Robert Krasny Lagrangian Particle Method for 1-D Cold ES Plasma イロト 不得 トイヨト イヨト June 20, 2023

э

19/19