HORACIO MORENO MONTAÑES

(269) \cdot 769 \cdot 3905 \diamond hmorenom@umich.edu \diamond www.horaciomorenom.me

EDUCATION

University of Michigan, Ann Arbor

Ph.D in Applied and Interdisciplinary Mathematics and Scientific Computing

University of Michigan, Ann Arbor

B.S. in Mathematical Sciences — GPA: 3.92 B.S. in Interdisciplinary Physics — GPA: 3.96 Overall GPA: 3.928

Relevant Coursework:

- **Mathematics:** Numerical Linear Algebra, Intro to Numerical Methods, Mathematical Modeling, Ordinary/Partial & BV/Nonlinear Differential Equations, Applied Complex Analysis, Single and Multivariable Real Analysis, Explorations in Mathematics Research
- **Physics:** Mechanics, E & M, Computational Physics, Mathematical Methods in Physics, Topics in Modern Physics, Intro to Optics/Thermodynamics/Relativity
- · Other: Intro to Plasmas and Fusion, Elementary Programing Concepts, Data Structures and Algorithms

RESEARCH INTERESTS

I am interested in exploring mathematical patterns embedded in physical phenomena and using them so solve real-world probems. My current interests are the mathematical modeling and both the design and implementation of numerical methods for problems in fluid and plasma dynamics. I am also interested in exploring the application of machine learning and neural networks to physics problems.

RESEARCH AND ACADEMIC EXPERIENCE

REU at the University of Michigan

Modeling 1D Cold Electrostatic Plasma with a Lagrangian Particle Method

May 2023 - Present Advisor: Robert Krasny

October 2020 - Present

Advisor: Enrico Landi

- Developed a Lagrangian Particle method in Python to simulate the evolution of a one-dimensional cold, collisionless plasma, using the Vlasov-Poisson equations.
- Implemented regularization of the discontinuities in the electric field and resolve convergence, as well as a particle insertion scheme to ensure the plasma is well-defined without increased computational cost of a finer spatial discretization on all of the plasma.
- Analyzed the method's convergence to a solution as timestep size, spatial discretization, and regularization parameters were varied.
- Investigated possible applications to other fields where the Vlasov-Poisson equations are used, such as the evolution of perturbations of dark matter at cosmological scales.
- · Presented findings in a 30-minute talk during the weekly REU seminars to other participating students and faculty.

UROP at the Climate and Space Sciences Department, University of Michigan *Empirical Modeling of Solar Wind*

- Wrote Python program to find suitable parametrized equations for the evolution of velocity, density, and temperature of the solar wind using Markov Chain Monte Carlo methods.
- · Analyzed and evaluated resulting models with empirical data across different stages of the solar cycle.
- · Proposed and implemented alternative parametrizations to ensure the developed models fit physical constraints.
- · Produced, collected, and organized results and data for 6 different stages of the solar cycle for further analysis.

August 2024-Present

May 2024

 $\cdot~$ Presented results in the annual UROP Symposium.

Introduction to Mathematical Modeling Course

- · Studied different mathematical modeling techniques used in different fields, from Mathematical Physics to Biology, Epidemiology, and Economics.
- Worked on two research projects along the semester in groups of three students, one in Discrete Modeling of Dune-Obstable Intersactions and Dynamics, as well as the Propagation of Stadium Waves.
- Wrote simulations in Matlab and Python and analyzed the results to assess their applicability, accuracy to real-world systems, and shortcomings and areas of improvement.
- · Compiled results into two research papers, as well as presenting them to the rest of the class on brief, 10 minute presentations.

Explorations in Mathematics Research Course

- Collaborated with other undergraduate students to work on two Mathematics research projects throughout the semester, one in Dynamical Systems and one in Probability.
- · Implemented key aspects of Mathematical research, such as posing well-formed questions, formulating definitions, exploring examples, and making conclusions and conjectures.
- · Explored, analyzed problems at hand through discussion and computer simulations to gain a further understanding.
- · Presented results both in two written reports and two hour-long presentations to the rest of the class.

Directed Reading Program at the University of Michigan

The Hartman-Grobman Theorem: Approximating Nonlinear Dynamical Systems

- · Participated in an individualized exploration of introductory ideas in Differential Equations and Dynamics.
- · Gained solid theoretical understanding on the topic though independent study and exercises.
- Met with graduate student advisor in regular weekly meetings to discuss progress, clarify concepts, and receive guidance on further study. Discussed insights, questions, and potential directions for further research.
- · Presented the Hartman-Grobman Theorem along with all necessary background to fellow students participating in the DRP in an end-of-semester seminar.

PROFESSIONAL EXPERIENCE

Honors Multivariable Calculus

Course Assistant

- · Attended Inquiry-Based Learning (IBL) lectures of 30 students, providing direction to groups of students working on select problems chosen to construct knowledge through investigation and discovery.
- · Provided visualizations, alternative interpretations, and examples to help solidify student undertanding of topics in Multivariable Calculus and Linear Algebra.
- · Graded and provided useful, personalized feedback on weekly homework assingments.

Explorations in Mathematics Research

Course Assistant

- · Mentored and guided two groups of three to four undergraduate students working on small mathematical research projects in dynamical systems and graph theory.
- · Oversaw research progress and checked in with groups of students on one-on-one meetings once a week to discuss any issues they have encountered, as well as assessing the validity of their research findings.
- · Aided students on developing communication strategies to effectively discuss mathematical research with peers during weekly meetings.
- · Provided critical feedback in eight different presentation dry-runs and four research paper drafts to ensure clear and concise exposition of mathematical ideas.
- · Lectured a class of 16 students on useful tools for mathematical reaserch and exploration like Mathematica and Python.

January 2022 - April 2022

January 2021 - April 2021 Graduate Mentor: Saibal De

August 2023 - Present

Ann Arbor, MI

January 2023 - April 2023 Ann Arbor, MI

University of Michigan Math Lab

Mathematics Tutor

- · Tutored dozens of students enrolled in introductory Precalculus, Calculus, Differential Equations, and Linear Algebra courses for 8 hours a week.
- Reviewed new topics in brief 10-15 minute lectures to solidify understanding.
- Performed several administrative tasks such as ensuring both tutors and tutees registered time spent in the Math Lab and assigned students to tutors.
- · Provided alternative explanations and perspectives with the aid of custom computer visualizations to illustrate hard-tograsp topics when applicable.

M-STEM Summer Program

Academic Facilitator

- · Assisted a graduate instructor in summer Math lectures to a class of 15 incoming freshmen to prepare them for advanced Calculus classes in the fall.
- Held hour-long office hours and supplemental instruction sessions twice a week, assigning practice problems and answering homework or class questions.
- Learned and applied several learning techniques both in lectures and in supplemental instruction sessions.
- Graded weekly and biweekly homework, providing valuable and insightful feedback to students. d

LEADERSHIP AND OUTREACH

Society For Advancing Chicanos/Hispanics & Native Americans in Science Undergraduate Representative Ann Arbor, MI

- Collaborated with fellow graduate and undergraduate students to organize various community-building, outreach, social, and professional development events throughout the summer and into the fall semester to increase participation in STEM for underrepresented minorities.
- Advertised the student organization to the undergraduate population in several university-wide outreach events.
- · Participated in fund-raising campaigns to secure necessary resources for events, as well as funding SACNAS members to attend the annual nDiSTEM Conference to present research results.

TALKS AND PRESENTATIONS

Modeling 1D Cold Electrostatic Plasma with a Lagrangian Particle Method - NDiSTEM Conference	October 2023
Modeling 1D Cold Electrostatic Plasma with a Lagrangian Particle Method - REU Semminar	June 2023
Differentiating and Integrating with Matrices - St. Joseph High School	December 2022
Empirical Modeling of Solar Wind - UROP Seminar	April 2021
The Hartman-Grobman Theorem: Approximating Nonlinear Dynamical Systems - DRP Presentation	April 2021

MAJOR ACHIEVEMENTS, SCHOLARSHIPS, AND AWARDS

Wilfred Kaplan Award in Applied Mathematics	May 2024
MICDE Fellowship	March 2024
SACNAS NDiSTEM Conference Travel Scholarship	August 2023
James B. Angell Scholar	May 2022, May 2023
University Honors	August 2020 - Present
Four-year Ferrante Scholarship Fund Recipient	August 2020

September 2021 - December 2022 Ann Arbor, MI

> June 2021 - August 2021 Ann Arbor, MI

> > July - Present

Computer Languages	Python, Julia, MATLAB, C++, Mathematica
Libraries	Experience in NumPy, Matplotlib, SciPy